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Abstract 
 
Motivation 

Quantifying signal intensity across genomic regions is a fundamental step in genomic data 
analysis, underpinning tasks such as enhancer detection from ChIP-seq, chromatin accessibility 
from ATAC-seq, gene expression from RNA-seq, and so much more. Despite the availability of 
tools such as BEDTools, deepTools, and pyBigWig, researchers face recurring challenges: high 
memory usage, slow runtimes on large files, difficulty working with multiple BigWig tracks in 
parallel, and lack of integration with downstream statistical workflows in Python. Researchers 
are frequently forced to write ad hoc scripts or convert formats just to perform simple signal 
extraction—often at the cost of excessive memory usage or runtime. A scalable, memory-
efficient, and Python-native solution is needed to streamline these signal quantification tasks and 
support fast iteration in exploratory and production-scale genomics workflows. 

Results 
We present SignalFrame, a Python package for fast and scalable quantification of genomic 
signals from BigWig files across BED-defined regions. SignalFrame efficiently computes per-
region signal values—including area under the curve (AUC), mean, max, and other statistics—
across genomic intervals, with support for simultaneous extraction from multiple BigWig tracks 
and built-in optimization for performance. Outputs are returned as pandas DataFrames, enabling 
seamless integration with Python-based statistical and visualization workflows. Key features 
include dynamic merge-aware interval collapsing to minimize redundant BigWig queries, 
adaptive slack estimation for efficient region grouping, memory-efficient signal extraction via 
chunked access, and native support for multi-track comparative analysis. Designed for high-
throughput workflows, SignalFrame enables rapid and reproducible signal quantification across 
millions of regions and large-scale genomic datasets. 
 
 

1. Introduction 
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The growing volume of high-throughput sequencing data has made genome-wide signal tracks—
typically stored in BigWig format—a cornerstone of functional genomics. These tracks quantify 
signals such as chromatin accessibility, histone modifications, transcription factor occupancy, 
and gene expression across the genome. In many workflows, including differential accessibility 
testing, motif enrichment, and epigenomic profiling, researchers must summarize signal values 
across predefined genomic regions stored in BED files. This is often accomplished by computing 
metrics such as area under the curve (AUC), mean, or maximum signal intensity within each 
interval. 

Despite the ubiquity of this task, current tools for signal quantification face critical limitations. 
BEDTools1, though widely adopted, is slow and memory-intensive at scale. pyBigWig2 allows 
programmatic access in Python but lacks efficient support for batching, merging, or parallelizing 
queries. deepTools3 offers high-quality visualization tools but is not optimized for extracting 
AUC across large numbers of intervals. These constraints become particularly acute in large-
scale studies involving single-cell data, multi-condition experiments, or hundreds of epigenomic 
datasets, where performance bottlenecks and memory overhead can render certain analyses 
impractical. 

To address these limitations, we developed SignalFrame, a fast and scalable Python package for 
extracting signal statistics from BigWig files across BED-defined regions. SignalFrame supports 
a broad range of per-region summary methods—including AUC, mean, max, median, standard 
deviation, and coverage—and performs automated, merge-aware interval batching to minimize 
redundant I/O operations. Adaptive slack estimation enables dynamic grouping of nearby 
intervals for speed improvements, while chunked access ensures memory efficiency. Outputs are 
returned as structured pandas DataFrames4, facilitating seamless integration with Python-based 
statistical modeling, normalization routines, and signal visualization. Together, these features 
position SignalFrame as a flexible, high-performance toolkit for signal quantification in high-
throughput genomics. 

2. Methods 

2.1 Region-Level Signal Extraction from BigWig Files 

SignalFrame computes quantitative signal summaries from BigWig-formatted genomic tracks 
over user-defined regions. Input regions are specified in standard BED format, either as a file or 
a pandas.DataFrame4 with 'chr', 'start', and 'end' columns. Using pyBigWig2, the tool retrieves 
per-base signal values with built-in bounds checking to ensure valid chromosome coordinates. 
Supported summary statistics include AUC, mean, max, min, median, standard deviation, 
coverage (non-zero count), and non-zero mean. Regions are processed in chromosome-sorted 
order to minimize disk I/O, and results are returned as new columns in the original DataFrame, 
ready for downstream analysis in Python-based workflows. 

2.2 Merge-Aware Interval Collapsing 

To reduce redundant BigWig access in densely annotated regions, SignalFrame implements a 
merge-aware collapsing strategy. When multiple nearby regions are separated by short gaps, the 
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tool temporarily merges them before querying the BigWig file. After retrieving the signal from 
the merged span, SignalFrame maps the results back to each original interval based on its relative 
overlap. This merge-aware strategy significantly improves performance in high-density datasets. 
The merging threshold is determined automatically using a data-driven heuristic based on inter-
region distances (see Section 2.3). 

2.3 Adaptive Slack Estimation 

The maximum allowable distance between adjacent regions for merging—termed the slack—is 
estimated automatically by SignalFrame. The algorithm computes the distribution of gaps 
between consecutive intervals and selects a slack value corresponding to 50% of the median 
positive gap, bounded within a user-safe range. 

This adaptive slack estimation enables consistent performance across BED files with varying 
region densities, and the computed slack is applied independently per chromosome group to 
reflect local structure. 

2.4 Multi-Track Signal Extraction 

SignalFrame supports simultaneous extraction of signal values across multiple BigWig files 
using a single interface. When provided with a list of BigWig paths, the tool computes the 
specified summary statistic for each track independently while sharing interval batching and 
merging operations to maximize efficiency. Results are returned in a single DataFrame, with one 
row per region and one column per track-statistic pair, streamlining comparisons across 
experimental conditions, replicates, or time points, eliminating the need for external wrapper 
scripts. 

2.5 Normalization and Enrichment Comparison 

SignalFrame includes built-in methods for normalizing signal values and computing enrichment 
across tracks. Supported normalization options include length normalization, Z-score 
transformation, log2 scaling with a pseudocount, min-max scaling, and quantile normalization to 
a mean or median reference. For pairwise comparisons, users can compute absolute differences, 
fold changes, log2 fold changes, and percent changes. All operations are applied directly to the 
output DataFrame and integrate seamlessly with standard Python analysis tools. 

2.6 Statistical Testing 

SignalFrame provides built-in wrappers for common statistical tests on region-level signals. 
Users can perform unpaired t-tests or Mann–Whitney U tests5 to compare two groups, as well as 
one-way or two-way ANOVA6 to assess differences across categorical factors. These functions 
operate directly on the output DataFrame using user-supplied group labels, and return p-values or 
ANOVA tables for straightforward interpretation and integration with downstream analysis. 

2.7 Visualization 
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SignalFrame offers tools for visualizing genomic signals from BigWig files, including region-
specific line plots, stacked signal plots across BED-defined intervals, and distribution plots for 
group comparisons. Visualizations are built with matplotlib7, support customization, and are 
Jupyter-compatible. 
 

 

Table 1. Benchmarking runtime and memory usage of SignalFrame versus existing tools 
for genomic signal extraction. 

Runtime (in seconds) and peak memory usage (in MB or GB) are reported for SignalFrame, 
pyBigWig (Python script), bedtools (with AWK wrapper), and deeptools (via computeMatrix 
scale-regions). Three BigWig datasets were used: a small Treg ATAC-seq file (150MB), a 
medium H3K27ac ChIP-seq file (800MB), and a large FoxP3 ChIP-seq file (1.6GB, union of 
Redensky and Dixon). For each BigWig, signals were computed over 10k, 100k, and 1M 
genomic intervals sampled from the Simple Repeats track of the mm10 genome (UCSC Genome 
Browser). All tools produced identical signal outputs (Pearson = 1.0). Benchmarks were run on 
the Harvard O2 cluster using a shared networked file system. “Ref” indicates that SignalFrame 
was used as the reference for correlation comparisons. 

 
3. Results 

We benchmarked SignalFrame against three widely used tools—pyBigWig2, bedtools1, and 
deeptools3—for computing region-level signal from BigWig files. Benchmarks were run on a 
shared high-performance computing cluster with a networked file system (Harvard O28), as tools 
like bedtools required over 100 GB of memory—making local execution infeasible for fair 
comparison. We used real datasets of varying size relating to the mm10 genome: a 150MB Treg 
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ATAC-seq file9, an 800MB H3K4me3 ChIP-seq file10, and a 1.6GB FoxP3 ChIP-seq file (union 
of Rudensky9 and Dixon11). BED intervals were sampled from the Simple Repeats annotation 
based on Tandem Repeats Finder12 to reflect realistic genomic regions in the mm10 genome. 

Across all file sizes and region counts (10k, 100k, 1M), SignalFrame demonstrated consistently 
strong performance. For large-scale queries (1M regions), it outperformed pyBigWig and 
bedtools in runtime by up to 2.2× and 6.5×, respectively, while maintaining similar performance 
to deeptools. SignalFrame achieved this with low memory usage—comparable to pyBigWig, 
significantly lower than deeptools, and dramatically lower than bedtools, which consumed over 
140GB for the largest dataset. 

Although all four tools ultimately produced identical signal values (Pearson correlation = 1.0), 
each competitor required custom scripting to calculate signal over regions: a Python wrapper for 
pyBigWig, and shell-based AWK workflows for bedtools and deeptools. In contrast, 
SignalFrame is purpose-built for this task, requiring no additional scripting. The ability to scale 
to millions of regions with minimal memory, while preserving ease of use and correctness, 
makes SignalFrame a robust and practical solution for genomic signal extraction. 

Data Availability 
The software is available as a Python package via PyPI and can be installed using pip. Source 
code, documentation, and example usage are hosted on GitHub at 
https://github.com/clarkvd/SignalFrame. All code is released under an open-source license to 
support transparency and reproducibility. 
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Supplementary Data 
 
PyBigWig 

 
 
 
 
 
 
 
SignalFrame: 
/usr/bin/time -v python signalframe.py ATAC_tTreg.bw 10k_regions.bed 
/usr/bin/time -v python signalframe.py ATAC_tTreg.bw 100k_regions.bed 
/usr/bin/time -v python signalframe.py ATAC_tTreg.bw 1M_regions.bed 
/usr/bin/time -v python signalframe.py H3K4me3 _ChIP.bw 10k_regions.bed 
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/usr/bin/time -v python signalframe.py H3K4me3 _ChIP.bw 100k_regions.bed 
/usr/bin/time -v python signalframe.py H3K4me3 _ChIP.bw 1M_regions.bed 
/usr/bin/time -v python signalframe.py FoxP3_ChIP.bw 10k_regions.bed 
/usr/bin/time -v python signalframe.py FoxP3_ChIP.bw 100k_regions.bed 
/usr/bin/time -v python signalframe.py FoxP3_ChIP.bw 1M_regions.bed 
 
PyBigWig: 
/usr/bin/time -v python pybigwig.py ATAC_tTreg.bw 10k_regions.bed 
/usr/bin/time -v python pybigwig.py ATAC_tTreg.bw 100k_regions.bed 
/usr/bin/time -v python pybigwig.py ATAC_tTreg.bw 1M_regions.bed 
/usr/bin/time -v python pybigwig.py H3K4me3 _ChIP.bw 10k_regions.bed 
/usr/bin/time -v python pybigwig.py H3K4me3 _ChIP.bw 100k_regions.bed 
/usr/bin/time -v python pybigwig.py H3K4me3 _ChIP.bw 1M_regions.bed 
/usr/bin/time -v python pybigwig.py FoxP3_ChIP.bw 10k_regions.bed 
/usr/bin/time -v python pybigwig.py FoxP3_ChIP.bw 100k_regions.bed 
/usr/bin/time -v python pybigwig.py FoxP3_ChIP.bw 1M_regions.bed 
 
Bedtools: 
/usr/bin/time -v bash -c 'bedtools intersect -a 10k_regions.bed -b ATAC_tTreg.bedgraph -wa -wb 
| awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; overlap_end 
= ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end - 
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for 
(k in sum) print k, sum[k]}'\'' > 10k_bedtools.bed' 
/usr/bin/time -v bash -c 'bedtools intersect -a 100k_regions.bed -b ATAC_tTreg.bedgraph -wa -
wb | awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; 
overlap_end = ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end - 
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for 
(k in sum) print k, sum[k]}'\'' > 100k_bedtools.bed' 
/usr/bin/time -v bash -c 'bedtools intersect -a 1M_regions.bed -b ATAC_tTreg.bedgraph -wa -wb 
| awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; overlap_end 
= ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end - 
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for 
(k in sum) print k, sum[k]}'\'' > 1M_bedtools.bed' 
/usr/bin/time -v bash -c 'bedtools intersect -a 10k_regions.bed -b H3K4me3 _ChIP.bedgraph -wa 
-wb | awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; 
overlap_end = ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end - 
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for 
(k in sum) print k, sum[k]}'\'' > 10k_bedtools.bed' 
/usr/bin/time -v bash -c 'bedtools intersect -a 100k_regions.bed -b H3K4me3 _ChIP.bedgraph -
wa -wb | awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; 
overlap_end = ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end - 
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for 
(k in sum) print k, sum[k]}'\'' > 100k_bedtools.bed' 
/usr/bin/time -v bash -c 'bedtools intersect -a 1M_regions.bed -b H3K4me3 _ChIP.bedgraph -wa 
-wb | awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; 
overlap_end = ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end - 
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overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for 
(k in sum) print k, sum[k]}'\'' > 1M_bedtools.bed' 
/usr/bin/time -v bash -c 'bedtools intersect -a 10k_regions.bed -b FoxP3_ChIP.bedgraph -wa -wb 
| awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; overlap_end 
= ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end - 
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for 
(k in sum) print k, sum[k]}'\'' > 10k_bedtools.bed' 
/usr/bin/time -v bash -c 'bedtools intersect -a 100k_regions.bed -b FoxP3_ChIP.bedgraph -wa -
wb | awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; 
overlap_end = ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end - 
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for 
(k in sum) print k, sum[k]}'\'' > 100k_bedtools.bed' 
/usr/bin/time -v bash -c 'bedtools intersect -a 1M_regions.bed -b FoxP3_ChIP.bedgraph -wa -wb 
| awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; overlap_end 
= ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end - 
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for 
(k in sum) print k, sum[k]}'\'' > 1M_bedtools.bed' 
 
Deeptools: 
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles ATAC_tTreg.bw --BED 
10k_regions.bed --outFileName deeptools_10k.npz --outRawCounts deeptools_10k.tmp.tsv && 
awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4, 
region_len, auc}' deeptools_10k.tmp.tsv > deeptools_10k_with_auc.tsv && rm 
deeptools_10k.tmp.tsv 
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles ATAC_tTreg.bw --BED 
100k_regions.bed --outFileName deeptools_100k.npz --outRawCounts deeptools_100k.tmp.tsv 
&& awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, 
$3, $4, region_len, auc}' deeptools_100k.tmp.tsv > deeptools_100k_with_auc.tsv && rm 
deeptools_100k.tmp.tsv 
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles ATAC_tTreg.bw --BED 
1M_regions.bed --outFileName deeptools_1M.npz --outRawCounts deeptools_1M.tmp.tsv && 
awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4, 
region_len, auc}' deeptools_1M.tmp.tsv > deeptools_1M_with_auc.tsv && rm 
deeptools_1M.tmp.tsv 
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles H3K4me3 _ChIP.bw --BED 
10k_regions.bed --outFileName deeptools_10k.npz --outRawCounts deeptools_10k.tmp.tsv && 
awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4, 
region_len, auc}' deeptools_10k.tmp.tsv > deeptools_10k_with_auc.tsv && rm 
deeptools_10k.tmp.tsv 
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles H3K4me3 _ChIP.bw --BED 
100k_regions.bed --outFileName deeptools_100k.npz --outRawCounts deeptools_100k.tmp.tsv 
&& awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, 
$3, $4, region_len, auc}' deeptools_100k.tmp.tsv > deeptools_100k_with_auc.tsv && rm 
deeptools_100k.tmp.tsv 
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles H3K4me3 _ChIP.bw --BED 
1M_regions.bed --outFileName deeptools_1M.npz --outRawCounts deeptools_1M.tmp.tsv && 
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awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4, 
region_len, auc}' deeptools_1M.tmp.tsv > deeptools_1M_with_auc.tsv && rm 
deeptools_1M.tmp.tsv 
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles FoxP3_ChIP.bw --BED 
10k_regions.bed --outFileName deeptools_10k.npz --outRawCounts deeptools_10k.tmp.tsv && 
awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4, 
region_len, auc}' deeptools_10k.tmp.tsv > deeptools_10k_with_auc.tsv && rm 
deeptools_10k.tmp.tsv 
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles FoxP3_ChIP.bw --BED 
100k_regions.bed --outFileName deeptools_100k.npz --outRawCounts deeptools_100k.tmp.tsv 
&& awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, 
$3, $4, region_len, auc}' deeptools_100k.tmp.tsv > deeptools_100k_with_auc.tsv && rm 
deeptools_100k.tmp.tsv 
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles FoxP3_ChIP.bw --BED 
1M_regions.bed --outFileName deeptools_1M.npz --outRawCounts deeptools_1M.tmp.tsv && 
awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4, 
region_len, auc}' deeptools_1M.tmp.tsv > deeptools_1M_with_auc.tsv && rm 
deeptools_1M.tmp.tsv 
 


