
 1

SignalFrame: Fast and Memory-Efficient Signal Quantification from BigWig Files for
Large-Scale Genomic Region Analysis

Ryan Clark1,2,3*

1Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine,
Boston Children’s Hospital, MA 02115, USA

2Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School,
Boston, MA 02115, USA

3Lead Contact

*Correspondence:
Ryan.clark@childrens.harvard.edu

Abstract

Motivation

Quantifying signal intensity across genomic regions is a fundamental step in genomic data
analysis, underpinning tasks such as enhancer detection from ChIP-seq, chromatin accessibility
from ATAC-seq, gene expression from RNA-seq, and so much more. Despite the availability of
tools such as BEDTools, deepTools, and pyBigWig, researchers face recurring challenges: high
memory usage, slow runtimes on large files, difficulty working with multiple BigWig tracks in
parallel, and lack of integration with downstream statistical workflows in Python. Researchers
are frequently forced to write ad hoc scripts or convert formats just to perform simple signal
extraction—often at the cost of excessive memory usage or runtime. A scalable, memory-
efficient, and Python-native solution is needed to streamline these signal quantification tasks and
support fast iteration in exploratory and production-scale genomics workflows.

Results
We present SignalFrame, a Python package for fast and scalable quantification of genomic
signals from BigWig files across BED-defined regions. SignalFrame efficiently computes per-
region signal values—including area under the curve (AUC), mean, max, and other statistics—
across genomic intervals, with support for simultaneous extraction from multiple BigWig tracks
and built-in optimization for performance. Outputs are returned as pandas DataFrames, enabling
seamless integration with Python-based statistical and visualization workflows. Key features
include dynamic merge-aware interval collapsing to minimize redundant BigWig queries,
adaptive slack estimation for efficient region grouping, memory-efficient signal extraction via
chunked access, and native support for multi-track comparative analysis. Designed for high-
throughput workflows, SignalFrame enables rapid and reproducible signal quantification across
millions of regions and large-scale genomic datasets.

1. Introduction

 2

The growing volume of high-throughput sequencing data has made genome-wide signal tracks—
typically stored in BigWig format—a cornerstone of functional genomics. These tracks quantify
signals such as chromatin accessibility, histone modifications, transcription factor occupancy,
and gene expression across the genome. In many workflows, including differential accessibility
testing, motif enrichment, and epigenomic profiling, researchers must summarize signal values
across predefined genomic regions stored in BED files. This is often accomplished by computing
metrics such as area under the curve (AUC), mean, or maximum signal intensity within each
interval.

Despite the ubiquity of this task, current tools for signal quantification face critical limitations.
BEDTools1, though widely adopted, is slow and memory-intensive at scale. pyBigWig2 allows
programmatic access in Python but lacks efficient support for batching, merging, or parallelizing
queries. deepTools3 offers high-quality visualization tools but is not optimized for extracting
AUC across large numbers of intervals. These constraints become particularly acute in large-
scale studies involving single-cell data, multi-condition experiments, or hundreds of epigenomic
datasets, where performance bottlenecks and memory overhead can render certain analyses
impractical.

To address these limitations, we developed SignalFrame, a fast and scalable Python package for
extracting signal statistics from BigWig files across BED-defined regions. SignalFrame supports
a broad range of per-region summary methods—including AUC, mean, max, median, standard
deviation, and coverage—and performs automated, merge-aware interval batching to minimize
redundant I/O operations. Adaptive slack estimation enables dynamic grouping of nearby
intervals for speed improvements, while chunked access ensures memory efficiency. Outputs are
returned as structured pandas DataFrames4, facilitating seamless integration with Python-based
statistical modeling, normalization routines, and signal visualization. Together, these features
position SignalFrame as a flexible, high-performance toolkit for signal quantification in high-
throughput genomics.

2. Methods

2.1 Region-Level Signal Extraction from BigWig Files

SignalFrame computes quantitative signal summaries from BigWig-formatted genomic tracks
over user-defined regions. Input regions are specified in standard BED format, either as a file or
a pandas.DataFrame4 with 'chr', 'start', and 'end' columns. Using pyBigWig2, the tool retrieves
per-base signal values with built-in bounds checking to ensure valid chromosome coordinates.
Supported summary statistics include AUC, mean, max, min, median, standard deviation,
coverage (non-zero count), and non-zero mean. Regions are processed in chromosome-sorted
order to minimize disk I/O, and results are returned as new columns in the original DataFrame,
ready for downstream analysis in Python-based workflows.

2.2 Merge-Aware Interval Collapsing

To reduce redundant BigWig access in densely annotated regions, SignalFrame implements a
merge-aware collapsing strategy. When multiple nearby regions are separated by short gaps, the

 3

tool temporarily merges them before querying the BigWig file. After retrieving the signal from
the merged span, SignalFrame maps the results back to each original interval based on its relative
overlap. This merge-aware strategy significantly improves performance in high-density datasets.
The merging threshold is determined automatically using a data-driven heuristic based on inter-
region distances (see Section 2.3).

2.3 Adaptive Slack Estimation

The maximum allowable distance between adjacent regions for merging—termed the slack—is
estimated automatically by SignalFrame. The algorithm computes the distribution of gaps
between consecutive intervals and selects a slack value corresponding to 50% of the median
positive gap, bounded within a user-safe range.

This adaptive slack estimation enables consistent performance across BED files with varying
region densities, and the computed slack is applied independently per chromosome group to
reflect local structure.

2.4 Multi-Track Signal Extraction

SignalFrame supports simultaneous extraction of signal values across multiple BigWig files
using a single interface. When provided with a list of BigWig paths, the tool computes the
specified summary statistic for each track independently while sharing interval batching and
merging operations to maximize efficiency. Results are returned in a single DataFrame, with one
row per region and one column per track-statistic pair, streamlining comparisons across
experimental conditions, replicates, or time points, eliminating the need for external wrapper
scripts.

2.5 Normalization and Enrichment Comparison

SignalFrame includes built-in methods for normalizing signal values and computing enrichment
across tracks. Supported normalization options include length normalization, Z-score
transformation, log2 scaling with a pseudocount, min-max scaling, and quantile normalization to
a mean or median reference. For pairwise comparisons, users can compute absolute differences,
fold changes, log2 fold changes, and percent changes. All operations are applied directly to the
output DataFrame and integrate seamlessly with standard Python analysis tools.

2.6 Statistical Testing

SignalFrame provides built-in wrappers for common statistical tests on region-level signals.
Users can perform unpaired t-tests or Mann–Whitney U tests5 to compare two groups, as well as
one-way or two-way ANOVA6 to assess differences across categorical factors. These functions
operate directly on the output DataFrame using user-supplied group labels, and return p-values or
ANOVA tables for straightforward interpretation and integration with downstream analysis.

2.7 Visualization

 4

SignalFrame offers tools for visualizing genomic signals from BigWig files, including region-
specific line plots, stacked signal plots across BED-defined intervals, and distribution plots for
group comparisons. Visualizations are built with matplotlib7, support customization, and are
Jupyter-compatible.

Table 1. Benchmarking runtime and memory usage of SignalFrame versus existing tools
for genomic signal extraction.

Runtime (in seconds) and peak memory usage (in MB or GB) are reported for SignalFrame,
pyBigWig (Python script), bedtools (with AWK wrapper), and deeptools (via computeMatrix
scale-regions). Three BigWig datasets were used: a small Treg ATAC-seq file (150MB), a
medium H3K27ac ChIP-seq file (800MB), and a large FoxP3 ChIP-seq file (1.6GB, union of
Redensky and Dixon). For each BigWig, signals were computed over 10k, 100k, and 1M
genomic intervals sampled from the Simple Repeats track of the mm10 genome (UCSC Genome
Browser). All tools produced identical signal outputs (Pearson = 1.0). Benchmarks were run on
the Harvard O2 cluster using a shared networked file system. “Ref” indicates that SignalFrame
was used as the reference for correlation comparisons.

3. Results

We benchmarked SignalFrame against three widely used tools—pyBigWig2, bedtools1, and
deeptools3—for computing region-level signal from BigWig files. Benchmarks were run on a
shared high-performance computing cluster with a networked file system (Harvard O28), as tools
like bedtools required over 100 GB of memory—making local execution infeasible for fair
comparison. We used real datasets of varying size relating to the mm10 genome: a 150MB Treg

 5

ATAC-seq file9, an 800MB H3K4me3 ChIP-seq file10, and a 1.6GB FoxP3 ChIP-seq file (union
of Rudensky9 and Dixon11). BED intervals were sampled from the Simple Repeats annotation
based on Tandem Repeats Finder12 to reflect realistic genomic regions in the mm10 genome.

Across all file sizes and region counts (10k, 100k, 1M), SignalFrame demonstrated consistently
strong performance. For large-scale queries (1M regions), it outperformed pyBigWig and
bedtools in runtime by up to 2.2× and 6.5×, respectively, while maintaining similar performance
to deeptools. SignalFrame achieved this with low memory usage—comparable to pyBigWig,
significantly lower than deeptools, and dramatically lower than bedtools, which consumed over
140GB for the largest dataset.

Although all four tools ultimately produced identical signal values (Pearson correlation = 1.0),
each competitor required custom scripting to calculate signal over regions: a Python wrapper for
pyBigWig, and shell-based AWK workflows for bedtools and deeptools. In contrast,
SignalFrame is purpose-built for this task, requiring no additional scripting. The ability to scale
to millions of regions with minimal memory, while preserving ease of use and correctness,
makes SignalFrame a robust and practical solution for genomic signal extraction.

Data Availability
The software is available as a Python package via PyPI and can be installed using pip. Source
code, documentation, and example usage are hosted on GitHub at
https://github.com/clarkvd/SignalFrame. All code is released under an open-source license to
support transparency and reproducibility.

Acknowledgements
The author thanks Xi (Dylan) Wang and members of the Hur lab for helpful feedback and
discussion during the development of this project.

References

1. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26, 841-842, doi:10.1093/bioinformatics/btq033
(2010).

2. Ramírez, F. pyBigWig: Python interface for BigWig files. GitHub,
https://github.com/deeptools/pyBigWig (2016).

3. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data
analysis. Nucleic Acids Res 44, W160-165, doi:10.1093/nar/gkw257 (2016).

4. McKinney, W. Data structures for statistical computing in Python. Proceedings of the 9th
Python in Science Conference 51–56 (2010).

5. Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python.
Nat. Methods 17, 261–272, doi:10.1038/s41592-019-0686-2 (2020).

6. Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with
Python. Proceedings of the 9th Python in Science Conference 57–61 (2010).

7. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95,
doi:10.1109/MCSE.2007.55 (2007).

https://github.com/clarkvd/SignalFrame

 6

8. Harvard FAS Research Computing. O2 High Performance Compute Cluster.
https://www.rc.fas.harvard.edu/ (accessed 2024).

9. Kitagawa, Y. et al. Guidance of regulatory T cell development by Satb1-dependent
super-enhancer establishment. Nat Immunol 18, 173-183, doi:10.1038/ni.3646 (2017).

10. ENCODE Project Consortium. File ENCFF649MFI from ChIP-seq of H3K4me3 in
mouse hippocampus (ENCSR213YKJ).
https://www.encodeproject.org/files/ENCFF649MFI/ (2022).

11. Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T
cell lineage specification. Cell 151, 153-166, doi:10.1016/j.cell.2012.06.053 (2012).

12. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids
Res. 27, 573–580, doi:10.1093/nar/27.2.573 (1999).

 7

Supplementary Data

PyBigWig

SignalFrame:
/usr/bin/time -v python signalframe.py ATAC_tTreg.bw 10k_regions.bed
/usr/bin/time -v python signalframe.py ATAC_tTreg.bw 100k_regions.bed
/usr/bin/time -v python signalframe.py ATAC_tTreg.bw 1M_regions.bed
/usr/bin/time -v python signalframe.py H3K4me3 _ChIP.bw 10k_regions.bed

 8

/usr/bin/time -v python signalframe.py H3K4me3 _ChIP.bw 100k_regions.bed
/usr/bin/time -v python signalframe.py H3K4me3 _ChIP.bw 1M_regions.bed
/usr/bin/time -v python signalframe.py FoxP3_ChIP.bw 10k_regions.bed
/usr/bin/time -v python signalframe.py FoxP3_ChIP.bw 100k_regions.bed
/usr/bin/time -v python signalframe.py FoxP3_ChIP.bw 1M_regions.bed

PyBigWig:
/usr/bin/time -v python pybigwig.py ATAC_tTreg.bw 10k_regions.bed
/usr/bin/time -v python pybigwig.py ATAC_tTreg.bw 100k_regions.bed
/usr/bin/time -v python pybigwig.py ATAC_tTreg.bw 1M_regions.bed
/usr/bin/time -v python pybigwig.py H3K4me3 _ChIP.bw 10k_regions.bed
/usr/bin/time -v python pybigwig.py H3K4me3 _ChIP.bw 100k_regions.bed
/usr/bin/time -v python pybigwig.py H3K4me3 _ChIP.bw 1M_regions.bed
/usr/bin/time -v python pybigwig.py FoxP3_ChIP.bw 10k_regions.bed
/usr/bin/time -v python pybigwig.py FoxP3_ChIP.bw 100k_regions.bed
/usr/bin/time -v python pybigwig.py FoxP3_ChIP.bw 1M_regions.bed

Bedtools:
/usr/bin/time -v bash -c 'bedtools intersect -a 10k_regions.bed -b ATAC_tTreg.bedgraph -wa -wb
| awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; overlap_end
= ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end -
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for
(k in sum) print k, sum[k]}'\'' > 10k_bedtools.bed'
/usr/bin/time -v bash -c 'bedtools intersect -a 100k_regions.bed -b ATAC_tTreg.bedgraph -wa -
wb | awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5;
overlap_end = ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end -
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for
(k in sum) print k, sum[k]}'\'' > 100k_bedtools.bed'
/usr/bin/time -v bash -c 'bedtools intersect -a 1M_regions.bed -b ATAC_tTreg.bedgraph -wa -wb
| awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; overlap_end
= ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end -
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for
(k in sum) print k, sum[k]}'\'' > 1M_bedtools.bed'
/usr/bin/time -v bash -c 'bedtools intersect -a 10k_regions.bed -b H3K4me3 _ChIP.bedgraph -wa
-wb | awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5;
overlap_end = ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end -
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for
(k in sum) print k, sum[k]}'\'' > 10k_bedtools.bed'
/usr/bin/time -v bash -c 'bedtools intersect -a 100k_regions.bed -b H3K4me3 _ChIP.bedgraph -
wa -wb | awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5;
overlap_end = ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end -
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for
(k in sum) print k, sum[k]}'\'' > 100k_bedtools.bed'
/usr/bin/time -v bash -c 'bedtools intersect -a 1M_regions.bed -b H3K4me3 _ChIP.bedgraph -wa
-wb | awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5;
overlap_end = ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end -

 9

overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for
(k in sum) print k, sum[k]}'\'' > 1M_bedtools.bed'
/usr/bin/time -v bash -c 'bedtools intersect -a 10k_regions.bed -b FoxP3_ChIP.bedgraph -wa -wb
| awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; overlap_end
= ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end -
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for
(k in sum) print k, sum[k]}'\'' > 10k_bedtools.bed'
/usr/bin/time -v bash -c 'bedtools intersect -a 100k_regions.bed -b FoxP3_ChIP.bedgraph -wa -
wb | awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5;
overlap_end = ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end -
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for
(k in sum) print k, sum[k]}'\'' > 100k_bedtools.bed'
/usr/bin/time -v bash -c 'bedtools intersect -a 1M_regions.bed -b FoxP3_ChIP.bedgraph -wa -wb
| awk -v OFMT="%.6f" '\''BEGIN {OFS="\t"} {overlap_start = ($2 > $5) ? $2 : $5; overlap_end
= ($3 < $6) ? $3 : $6; overlap_len = (overlap_end > overlap_start) ? (overlap_end -
overlap_start) : 0; auc = overlap_len * $7; key = $1 "\t" $2 "\t" $3; sum[key] += auc;} END {for
(k in sum) print k, sum[k]}'\'' > 1M_bedtools.bed'

Deeptools:
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles ATAC_tTreg.bw --BED
10k_regions.bed --outFileName deeptools_10k.npz --outRawCounts deeptools_10k.tmp.tsv &&
awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4,
region_len, auc}' deeptools_10k.tmp.tsv > deeptools_10k_with_auc.tsv && rm
deeptools_10k.tmp.tsv
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles ATAC_tTreg.bw --BED
100k_regions.bed --outFileName deeptools_100k.npz --outRawCounts deeptools_100k.tmp.tsv
&& awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2,
$3, $4, region_len, auc}' deeptools_100k.tmp.tsv > deeptools_100k_with_auc.tsv && rm
deeptools_100k.tmp.tsv
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles ATAC_tTreg.bw --BED
1M_regions.bed --outFileName deeptools_1M.npz --outRawCounts deeptools_1M.tmp.tsv &&
awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4,
region_len, auc}' deeptools_1M.tmp.tsv > deeptools_1M_with_auc.tsv && rm
deeptools_1M.tmp.tsv
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles H3K4me3 _ChIP.bw --BED
10k_regions.bed --outFileName deeptools_10k.npz --outRawCounts deeptools_10k.tmp.tsv &&
awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4,
region_len, auc}' deeptools_10k.tmp.tsv > deeptools_10k_with_auc.tsv && rm
deeptools_10k.tmp.tsv
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles H3K4me3 _ChIP.bw --BED
100k_regions.bed --outFileName deeptools_100k.npz --outRawCounts deeptools_100k.tmp.tsv
&& awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2,
$3, $4, region_len, auc}' deeptools_100k.tmp.tsv > deeptools_100k_with_auc.tsv && rm
deeptools_100k.tmp.tsv
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles H3K4me3 _ChIP.bw --BED
1M_regions.bed --outFileName deeptools_1M.npz --outRawCounts deeptools_1M.tmp.tsv &&

 10

awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4,
region_len, auc}' deeptools_1M.tmp.tsv > deeptools_1M_with_auc.tsv && rm
deeptools_1M.tmp.tsv
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles FoxP3_ChIP.bw --BED
10k_regions.bed --outFileName deeptools_10k.npz --outRawCounts deeptools_10k.tmp.tsv &&
awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4,
region_len, auc}' deeptools_10k.tmp.tsv > deeptools_10k_with_auc.tsv && rm
deeptools_10k.tmp.tsv
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles FoxP3_ChIP.bw --BED
100k_regions.bed --outFileName deeptools_100k.npz --outRawCounts deeptools_100k.tmp.tsv
&& awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2,
$3, $4, region_len, auc}' deeptools_100k.tmp.tsv > deeptools_100k_with_auc.tsv && rm
deeptools_100k.tmp.tsv
/usr/bin/time -v multiBigwigSummary BED-file --bwfiles FoxP3_ChIP.bw --BED
1M_regions.bed --outFileName deeptools_1M.npz --outRawCounts deeptools_1M.tmp.tsv &&
awk 'BEGIN {OFS="\t"} !/^#/ {region_len = $3 - $2; auc = $4 * region_len; print $1, $2, $3, $4,
region_len, auc}' deeptools_1M.tmp.tsv > deeptools_1M_with_auc.tsv && rm
deeptools_1M.tmp.tsv

